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Abstract: This paper develops a novel method of 3D inversion of induced polarization (IP) survey
data, based on a generalized effective-medium model of the IP effect (GEMTIP). The electrical
parameters of the effective-conductivity model are determined by the intrinsic petrophysical and
geometrical characteristics of composite media, such as the mineralization and/or fluid content of
rocks and the matrix composition, porosity, anisotropy, and polarizability of formations. The GEMTIP
model of multiphase conductive media provides a quantitative tool for evaluation of the type
of mineralization, and the volume content of different minerals using electromagnetic (EM) data.
The developed method takes into account the nonlinear nature of both electromagnetic induction
and IP phenomena and inverts the EM data in the parameters of the GEMTIP model. The goal of
the inversion is to determine the electrical conductivity and the intrinsic chargeability distributions,
as well as the other parameters of the relaxation model simultaneously. The recovered parameters
of the relaxation model can be used for the discrimination of different rocks, and in this way may
provide an ability to distinguish between uneconomic mineral deposits and zones of economic
mineralization using geophysical remote sensing technology.

Keywords: effective-medium; induced polarization; 3D inversion

1. Introduction

The induced polarization (IP) effect is caused by the complex electrochemical reactions that
accompany current flow in the earth. These reactions take place in a heterogeneous medium
representing the rock formations in areas of mineralization. It was demonstrated almost forty years
ago in the pioneering papers [1–4] that the IP effect may be used to separate the responses of economic
polarized targets from other anomalies. However, until recently, this idea had very limited practical
application because of the difficulties in recovering the induced polarization parameters from the
observed electromagnetic (EM) data, especially in the case of the 3D interpretation required for efficient
exploration of the mining targets.

The quantitative interpretation of IP data in a complex 3D environment is a very challenging
problem. The most widely used approach to solving this problem, which is considered the industry
standard, was developed by the University of British Columbia’s Geophysical Inversion Facility
(UBC-GIF). This approach is based on an assumption that the chargeability is relatively small and the
IP data can be expressed as a linear functional of the intrinsic chargeability [5,6]. The corresponding
linear inverse problem is then solved to obtain the chargeability model under an assumption that the
data are not affected by EM coupling. The main limitation of this linearized approach is that it ignores
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the nonlinear effects which are significant in IP phenomena. Also, it is impossible to use a linearized
approach if we need to recover not just the chargeability, but other parameters of the conductivity
relaxation model.

Indeed, a comprehensive analysis of IP phenomena has to be based on models with
frequency-dependent complex conductivity distribution. One of the most popular models is the
Cole–Cole relaxation model [7]. This model was introduced for studying the IP effect in the
pioneering papers [3,4,8]. The Cole–Cole model has been used in a number of publications for the
interpretation of IP data (e.g., [9–13]). The parameters of the conductivity relaxation model can
be used for discrimination of the different types of rock formations, which is an important goal in
mineral and petroleum exploration [1]. It was demonstrated by [14] that the Cole–Cole model can be
derived analytically from the general formulas of the generalized effective-medium theory of induced
polarization (GEMTIP) in a case of conductive media with spherical polarized inclusions.

Until recently, the Cole–Cole model parameters have been determined mostly in the physical lab
by direct analysis of the rock samples. However, [12,15] developed the methods of determining a 3D
distribution of the four parameters of the Cole–Cole model based on field IP data.

At the same time, it was demonstrated in [14] that a GEMTIP model, based on a rigorous
physical-mathematical description of heterogeneous conductive media using effective-medium theory,
provides a more accurate representation of the IP phenomenon than the Cole–Cole model, while
GEMTIP is equivalent to the Cole–Cole model for a simple case of spherical inclusions. The electrical
parameters of the new composite conductivity model are determined by the intrinsic petrophysical and
geometrical characteristics of composite media, such as the mineralization and/or fluid content of rocks
and the matrix composition, porosity, anisotropy, and polarizability of formations. The new GEMTIP
model of multiphase conductive media provides a quantitative tool for evaluation of the type of
mineralization, and the volume content of different minerals using EM data. The practical effectiveness
of the GEMTIP model was demonstrated in the recent publications [16,17] by comparison of the
resistivity spectra of rock samples and the mineralogical analyses of the same samples using QEMScan
electron microscopy technology. The publications cited above have also developed the GEMTIP rock
models with elliptical grains and applied these models to studying the complex resistivity of typical
mineral rocks.

In this paper, we introduce a novel method of 3D inversion of the IP data based on the GEMTIP
conductivity relaxation model with elliptical grains. The developed method takes into account the
nonlinear nature of both electromagnetic induction and IP phenomena and inverts the EM data in the
parameters of the GEMTIP model. The goal of the inversion is to determine the electrical conductivity
and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model
simultaneously. The recovered parameters of the relaxation model can be used for the discrimination
of different rocks, and in this way may provide an ability to distinguish between uneconomic mineral
deposits and zones of economic mineralization using geophysical remote sensing technology.

The solution of this problem requires the development of effective numerical methods for both
EM forward modeling and inversion in inhomogeneous media. These problems are extremely difficult,
especially in three-dimensional cases. The difficulties arise even in the forward modeling because
of the huge size of the numerical problem to be solved to adequately represent the complex 3D
distribution of EM parameters of the media, required in mining exploration. As a result, the time
and the memory requirements of the computer simulation could be excessive even for practically
realistic models. Our approach is based on applying parallel computing for modeling and inversion.
Additional difficulties are related to inversion for GEMTIP parameters. This problem is nonlinear
and ill posed, because, in general, the solution can be unstable and non-unique. In order to overcome
these difficulties, we use the methods of regularization theory to obtain a stable, unique solution of the
original ill-posed EM inverse problem [18,19]. We use the integral equation (IE) method for forward
modeling and the re-weighted regularized conjugate gradient (RRCG) method for the inversion, which
have proved to be effective techniques in geophysical applications [20].
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We applied the developed novel method of 3D inversion of the IP data for the comprehensive
interpretation of geophysical survey data collected in Mongolia for exploration of a mineral deposit.

2. Regularized Integral Equation (IE)-Based Inversion for Complex Resistivity

There are several advantages to using the IE method in IP data inversion in comparison with the
more traditional finite-difference (FD) approach. First, IE forward modeling requires the calculation of
the Green’s tensors for the background conductivity model. These tensors can be precomputed
only once and saved for multiple use on every iteration of an inversion, which speeds up the
computation of the predicted data [21]. Finally, IE forward modeling and inversion require the
discretization of the domain of inversion only, while in the framework of the FD method one has
to discretize the entire modeling domain, which includes not only the area of investigation but an
additional domain surrounding this area (including the areas in the air as well). For this reason, the
IE inversion method requires just one forward modeling on every iteration step, which speeds up
the computations and results in a relatively fast but rigorous inversion method. To obtain a stable
solution of a 3D inverse problem, we apply a regularization method based on a focusing stabilizing
functional [18]. This stabilizer helps generate a sharp and focused image of the anomalous conductivity
distribution, which is important in mineral exploration with the goal of delineating the boundaries of
a prospective target.

We know that the EM field recorded at the receiver can be represented as a sum of the background
EM field, Eb, Hb and the anomalous EM field, Ea, Ha:

E = Eb + Ea, (1)

H = Hb + Ha. (2)

The anomalous electromagnetic field is related to the electric current induced in the inhomogeneity,
j = ∆σE, according to the following integral formulas [18]:

Ea(rj) =
∫ ∫ ∫

D
ĜE(rj |r )· ∆σ(r)E(r)dv = GE [∆σE] , (3)

Ha(rj) =
∫ ∫ ∫

D
ĜH(rj |r )· ∆σ(r)H(r)dv = GH [∆σH] , (4)

where ĜE(rj |r ) and ĜH(rj |r ) are the electric and magnetic Green’s tensors defined for an unbounded
conductive medium with the background (horizontally-layered) conductivity σb; GE and GH are the
corresponding Green’s linear operators; and domain D represents a volume with an arbitrary varying
conductivity, σa = σb + ∆σa, within a domain D.

By using both integral Equations (3) and (4), we vastly simplify both the forward and inverse
problems of the IP method. Our problem can now be written in the classic form of the operator equation:

d = A(∆σ), (5)

where ∆σ is a vector formed by the anomalous conductivities within the targeted domain. The inversion
is based on minimization of the Tikhonov parametric functional, Pα(∆σ), with the corresponding
stabilizer S(∆σ) [22]:

Pα(∆σ) = ‖Wd(A(∆σ)− d‖2
L2
+ αS(∆σ), (6)

where Wd is the data weighting matrix, and α is a regularization parameter (used to balance the
misfit and stabilizer terms in Equation (6)). By minimizing parametric functional Pα(∆σ), we can
find the solution of the inverse problem. A standard technique to find a minimum of Pα(∆σ) is to
apply a gradient type minimization method [18,19]. We use the regularized conjugate gradient method
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(RCGM) to find the solution of the inverse problem. The mathematical outline of the RCGM method is
as follows:

rn = A(mn)− d, (a)

lαn
n = lαn(mn) = FT

n W2
drn + αnW2

m(mn−mapr), (b)

βαn
n =

∥∥lαn
n
∥∥2 /

∥∥∥lαn−1
n−1

∥∥∥2
, l̃αn

n = lαn
n +βαn

n l̃αn−1
n−1 , l̃α0

0 = lα0
0 , (c)

k̃αn
n =

(
l̃αnT
n lαn

n

)
/
{∥∥∥WdFn l̃αn

n

∥∥∥2
+ α

∥∥∥Wm l̃αn
n

∥∥∥2
}

, (d)

mn+1 = mn − k̃αn
n l̃αn

n , (e)

(7)

where Wm is the weighting matrix of the model parameters, and Fn is the matrix of the Fréchet
derivative of the forward modeling operator A.

The iterative process (7) is terminated when the misfit reaches the given level of noise in the data, ε0 :

φ(mN) = ‖rN‖2 ≤ ε2
0.

3. GEMTIP Resistivity Relaxation Model

In a general case, the effective conductivity of rocks is not necessarily a constant and real
number, but is complex and may vary with frequency. A general approach to constructing the
resistivity relaxation model is based on the rock physics and description of the medium as a composite
heterogeneous multiphase formation [14].

In the paper [16], we introduced for simplicity, the frequency-dependant complex resistivity for a
two-phase model with elliptical inclusions, described by the following formula

ρe = ρ0

{
1+

f
3 ∑

α=x,y,z

1
γα

[
1− 1

1+ sα (iωτ)C

]}−1

, (8)

where ρ0 is the DC resistivity (Ω·m); ω is the angular frequency (rad/s); τ is the time parameter, and C
is the relaxation parameter. The coefficients γα and sα (α = x, y, z) are the structural coefficients defined
by geometrical characteristics of the ellipsoidal inclusions used to approximate the grains:

sα = rα/
−
a, (9)

and
−
a is an average value of the equatorial (ax and ay) and polar (az) radii of the ellipsoidal grains, i.e.,

−
a =

(ax + ay + az)

3
, (10)

rα = 2
γα

λα
, (11)

where γα and λα are the diagonal components of the volume and surface depolarization tensors
described in [16].

In the case of spherical inclusions of radius a, γα = 1/3, λα = 2/3a, rα = a, and sα = 1, for
α = x, y, z. Therefore, Formula (8) can be simplified a follows:

ρe = ρ0

{
1+ 3 f

[
1− 1

1+ (iωτ)C

]}−1

. (12)
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After some algebra, we can transform Formula (12) in a form similar to the conventional Cole–Cole
formula for the effective resistivity:

ρ(ω) = ρ

(
1− η

(
1− 1

1+ (iωτ)C

))
, (13)

where ρ is the DC resistivity (Ω·m); ω is the angular frequency (rad/s), τ is the time parameter; η is
the intrinsic chargeability, and C is the relaxation parameter. The dimensionless intrinsic chargeability,
η, characterizes the intensity of the IP effect.

However, the inversion will be run with respect to the conductivity; therefore, it is more convenient
to express the conductivity using Formula (12):

σ(ω) = σ

(
1+ 3 f

(
1− 1

1+ (iωτ)C

))
, (14)

In this case, the anomalous conductivity, ∆σ̃, is equal to

∆σ̃ = σ(ω)− σb. (15)

Thus

∆σ̃ = σ f (η, τ, C)− σb = σ

(
1+ 3 f

(
1− 1

1+ (iωτ)C

))
− σb, (16)

where function f (η, τ, C) is equal

f (η, τ, C) =
(

1+ 3 f
(

1− 1
1+ (iωτ)C

))
. (17)

4. Regularized Inversion for the GEMTIP Model Parameters

We have demonstrated above that, in the case of the IP effect, the conductivity becomes a complex
and frequency-dependent function, σ = σ(ω), which increases significantly the number of unknown
parameters of the inversion. We can reduce this number by approximating the conductivity relaxation
curve using, for example, a GEMTIP model (14).

Indeed, let us substitute expression (16) for the anomalous conductivity into operator Equation (5):

d = A(σ f (η, τ, C)− σb) = AG (m) , (18)

where AG is a GEMTIP forward modeling operator, and m is a vector of the GEMTIP model parameters
[σ, η, τ, C] .

We can reformulate now the inverse problem with respect to the GEMTIP model parameters m.
The inversion, as above, is based on minimization of the Tikhonov parametric functional, Pα(m) ,

with the corresponding stabilizer S(m) [22]:

Pα(m) = ‖Wd(AG(m)− d‖2
L2
+ αS(m). (19)

where Wd is the data-weighting matrix, and α is a regularization parameter. There are several possible
choices for the stabilizer [18,19]. In the current paper, for simplicity, we use the minimum norm
stabilizer (SMN), which is equal to the square L2 norm of the difference between the current model m
and an appropriate a priori model mapr:

SMN(m) = ‖Wm(m−mapr)‖
2
L2

,

where Wm is the weighting matrix of the model parameters.
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The most common approach to minimization of the parametric functional P(m) is based on using
gradient-type methods. For example, we provided a summary of the regularized conjugate gradient
(RCG) algorithm of the parametric functional minimization in expression (7) above.

The appropriate selection of the data and model parameters weighting matrices is very important
for the success of the inversion. We determine the data weights as a diagonal matrix formed by the
inverse absolute values of the background field. Computation of the model weighting matrix, Wm, is
based on sensitivity analysis. In the current paper, we select Wm as the square root of the sensitivity
matrix for the model in each iteration:

W(n)
m =

√
diag

(
F∗mn F∗mn

)
.

As a result, we obtain a uniform sensitivity of the data to different model parameters [19].
We apply the adaptive regularization method. The regularization parameter α is updated in the

process of the iterative inversion as follows:

αn = α1qn−1; n = 1, 2, 3, · · · ; 0 < q < 1.

In order to avoid divergence, we begin an iteration from a value of α1, which can be obtained as a
ratio of the misfit functional and the stabilizer for an initial model, then reduce αn according to the last
formula on each subsequent iteration and continuously iterate until the misfit condition is reached:

rw
n0 = ‖rw

n0‖ =‖Wd [A (mαn0)− d] ‖ / ‖Wdd‖ ≤ δ, (20)

where rw
n0 is the normalized weighted residual, and δ is the relative level of noise in the weighted

observed data.

5. Fréchet Derivative Calculation Using the Quasi-Born Approximation

We assume, as above, that the conductivity within a 3D geoelectrical model can be presented
by the background (horizontally layered) conductivity σb, and an arbitrary varying conductivity,
σa = σb + ∆σa, within a domain D.

In this model, the anomalous field is produced by the anomalous conductivity distribution ∆σa,
and it can be calculated according to Formulas (3) and (4). Using these integral representations, we can
express the corresponding Fréchet derivatives, FE and FH, as follows:

FE
(
rj|r
)

=
∂E
(
rj
)

∂∆σa (r)

∣∣∣∣∣
∆σa

=
∂E∆σa

(
rj
)

∂∆σa (r)

∣∣∣∣∣
∆σa

=
∂GE

(
rj|r
)
[∆σa (r)E (r)]

∂∆σa (r)

∣∣∣∣∣
∆σa

,

FH
(
rj|r
)

=
∂H
(
rj
)

∂∆σa (r)

∣∣∣∣∣
∆σa

=
∂H∆σa

(
rj
)

∂∆σa (r)

∣∣∣∣∣
∆σa

=
∂GH

(
rj|r
)
[∆σa (r)E (r)]

∂∆σa (r)

∣∣∣∣∣
∆σa

.

We can treat the electric field E(n) (r), found on iteration number n, as the electric field in the
above equations for a subsequent iteration (n + 1), E (r) = E(n) (r). In this case, the Fréchet derivatives
at iteration number n can be found by direct integration from the last two equations involving the
electric field E(n) (r) computed on the current iteration:

FE,H
(
rj|r
)
=

∂GE,H
(
rj|r
)
[∆σa (r)E (r)]

∂∆σa (r)

∣∣∣∣∣
∆σa

≈ GE,H
(
rj|r
)

E(n) (r) .

Note that, the electric field E(n) (r) is calculated using the rigorous IE forward modeling method
at each iteration step to compute the predicted data (EM field at the receivers). Therefore, no extra
computation is required to find the electric field for the Fréchet derivative calculation.
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In the case of time domain EM data, the Fréchet derivatives also need to be transformed into time
domain. This can be accomplished by the same technique as that for EM fields, i.e., by the Fourier
transform using digital filtering techniques. For example, in the case of a causal step turnoff response,
the Fréchet derivative in time domain can be expressed as follows:

fE,H (t) = − 2
π

∫ ∞

0

Im [FE,H (ω)]

ω
cos (ωt) dω.

As a result, our inversion technique, based on the IE method, requires just one forward modeling
on every iteration step, while the conventional inversion scheme requires, as a rule, at least three
forward modeling solutions per inversion iteration (one to compute the predicted data, another
one to compute the gradient direction, and at least one for optimal calculation of the iteration step).
This approach results in a very efficient inversion method.

6. Calculation of the Fréchet Derivatives with Respect to the GEMTIP Model Parameters

In the current project, we consider the GEMTIP model describing a two-phase composite medium.
This GEMTIP model is characterized by four parameters (conductivity of the host medium, σ0, fraction
volume f , time constant, τ, and relaxation coefficient, C). Therefore, the Fréchet derivatives, with
respect to each GEMTIP parameter, are required to invert the IP data.

The Fréchet derivative of the EM fields with respect to the conductivity of the host medium can
be computed as follows:

Fσ0
E,H
(
rj|r
)

= Fσe
E,H
(
rj|r
)
· ∂σe

∂σ0
,

∂σe

∂σ0
= 1+

f
3

{
1− 1

1+ (iωτ)C

}
.

The Fréchet derivative of the EM fields, with respect to the fraction volume, can be computed
as follows:

F f
E,H
(
rj|r
)

= Fσe
E,H
(
rj|r
)
· ∂σe

∂ f
,

∂σe

∂ f
=

σ0

3

{
1− 1

1+ (iωτ)C

}
.

The Fréchet derivative of the EM fields, with respect to the time constant, can be determined as:

Fτ
E,H
(
rj|r
)

= Fσe
E,H
(
rj|r
)
· ∂σe

∂τ
,

∂σe

∂τ
=

σ0iωC (iωτ)C−1
{

f /3− (1+ f /3) (iωτ)C
}

{
1+ (iωτ)C

}2 .

The Fréchet derivative of the EM fields, with respect to the relaxation coefficient, is equal to:

FC
E,H
(
rj|r
)

= Fσe
E,H
(
rj|r
)
· ∂σe

∂C
,

∂σe

∂C
=

σ0 f (iωτ)C ln (iωτ)

3
{

1+ (iωτ)C
}2 .
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Note that, in all formulas above, the Fréchet derivative, with respect to the effective conductivity,
is given by the following expression:

Fσe
E,H
(
rj|r
)
=

∂GE,H
(
rj|r
)
[∆σe (r)E (r)]

∂∆σe (r)
.

In order to compute the Fréchet derivatives in the time domain, one can use the Fourier transform,
as was discussed above .

7. Model Study of 3D Spectral IP Inversion in the Frequency Domain and in the Time Domain

In order to develop an effective algorithm for 3D inversion of spectral IP data in both the frequency
and time domains, a simple synthetic model (as shown in Figure 1) was used. The model contains
an IP anomaly, with the conductivity described by a GEMTIP model, embedded in a homogeneous
half-space. The parameters of this model are as follows:

• Resistivity of the background (homogeneous half-space): 100 Ω·m
• GEMTIP parameters:

- Grain size: 1× 10−4, 1× 10−5 m (major and minor radii of ellipsoidal grain)
- DC resistivity: 5 Ω·m
- Fraction volume: 33% (Chargeability coefficient: 0.5)
- Time constant: 1.0 s
- Relaxation coefficient: 0.5

Dipole–dipole IP surveys were simulated, with electrode spacing a = 100 m, and a maximum
separation between the current and the potential electrodes of 700 m (n = 7). Both frequency and time
domain synthetic data were generated, as discussed below.

Figure 1. A 3D IP model used for the model study.

7.1. 3D Inversion of Frequency-Domain IP Data

In order to simulate a dipole–dipole SIP survey (in the frequency domain), synthetic data were
generated at 15 frequencies (0.125, 0.375, 0.625, 0.875, 1, 1.125, 3, 5, 7, 8, 9, 24, 40, 56 and 72 Hz).

The test results from inversion of the frequency domain synthetic data are shown in Figure 2; this
shows vertical cross sections (below the survey line, Y = 0 m) of the four 3D GEMTIP model parameters
(DC anomalous conductivity, fraction volume, time constant, and relaxation parameter), recovered
from the 3D inversion of frequency-domain SIP data. One can see that the spacial distributions and
values of the inverted GEMTIP parameters are in good agreement with the true model (shown in white
rectangles in Figure 2).
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Figure 2. Vertical cross sections of the GEMTIP model parameters (DC anomalous conductivity, fraction
volume, time constant, and relaxation parameter) recovered from the 3D inversion of frequency-domain
SIP data.

7.2. 3D Inversion of Time-Domain IP Data

In order to simulate a dipole–dipole SIP survey (in the time domain), synthetic data were
generated for time-steps from 1× 10−5 to 0.1 s at 10 points per decade.

Figure 3 shows the vertical cross sections (below the survey line, Y = 0 m) of 3D GEMTIP model
parameters (DC anomalous conductivity, fraction volume, time constant, and relaxation parameter)
recovered using the synthetic time-domain SIP data. Again, there is reasonable agreement with the
true model (shown in white rectangles in Figure 3).

Figure 3. Vertical cross sections of the GEMTIP model parameters (DC anomalous conductivity, fraction
volume, time constant, and relaxation parameter) recovered from the 3D inversion of time-domain
SIP data.
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This model study illustrates that both the frequency-domain and time-domain SIP data contain
enough information for the GEMTIP parameters to be recovered from these data. We will illustrate
this fact in more detail in the case study presented in the next section.

8. Case Study for the Copper Deposit in Mongolia

Multiple geophysical surveys, which included IP, and magnetic surveys, were carried out in
Mongolia. The survey area is located about 1800 km west from Ulan Bator, about 150 km from the
Bayan-Ulugii province center (Figure 4). The main objective of this survey was to determine the
alteration and mineralization zones.

In order to conduct a comprehensive interpretation of the IP survey data, the petrophysical and
mineralogical analyses of rock samples (drill cores) collected in the survey area were also deployed.
The following workflow was established for the comprehensive interpretation, in order to build 3D
geology/lithology models and to outline the target mineralized zones:

1. 3D inversions of IP data: to produce 3D models of the electrical properties (GEMTIP
model parameters);

2. Petrophysical and mineralogical analyses of rock samples: to determine the relationship between
geology/lithology and electrical properties;

3. Interpretation of the obtained results: to generate the images of the target mineralized zones
(on deposit scale).

The workflow of this comprehensive interpretation is also shown in Figure 5.
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Figure 4. Location map of the geophysical survey area in Mongolia.
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Figure 5. A workflow of the comprehensive interpretation of IP survey data.

8.1. 3D Inversion of IP Data

We have inverted the IP data (time-domain IP data with pole–dipole and gradient electrode
arrays) in 3D for the GEMTIP model parameters, DC resistivity, chargeability, time constant, and
relaxation parameter. Figure 6 shows the IP survey lines with locations of drill holes in the survey
area. In this figure, the black rectangle outlines the area where we show the 3D geoelectrical model
recovered from the 3D inversion of IP data (a part of the inversion domain; the area with higher
potential of the mineralization, estimated from the drilling results).

Figure 6. IP survey lines (pole–dipole and gradient arrays) in the survey area. The black rectangle
shows the area with higher potential of mineralization, estimated from drilling results.
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The specifications of IP surveys are as follows:

1. Pole–Dipole IP survey (time domain)

• Total of 8 lines (numbered from 0 to 7, shown as blue dots in Figure 6)
• Transmitter: with two current electrodes (A and B); one of them (A) is located on the survey

line, while another (B) is located far from the survey line.
• Spacing of two potential (receiver) electrodes (M and N, spacing a): 100 and/or 200 m.
• Period of the transmitting current: 2 s.
• Data acquisition: from 0.04 to 2 s after the transmitting current is turned off, with

semi-logarithmic 20 time windows.

2. Gradient IP survey (time-domain)

• Total 66-km line (shown as red dots in Figure 6); whole area was divided into three blocks.
• Transmitter: electric bipole with the length of 1.2 to 3 km.
• Spacing of two potential (receiver) electrodes: 50 m.
• Period of the transmitting current: 2 s ON, and 2 s OFF.
• Data acquisition: from 0.06 to 2 s after the transmitting current is turned off, with

semi-logarithmic 20 time windows.

Figure 7 shows an example of the observed and predicted pole–dipole IP data from 3D inversion.
One can see the good agreement between the observed and predicted data.

Figure 7. IP survey lines (Pseudo sections of the observed (top) and predicted (bottom) pole–dipole IP
data; Line 1, time channel 5.

Figures 8–11 show the 3D distributions of resistivity, chargeability, time constant, and relaxation
parameter, recovered from 3D inversion of pole–dipole IP data. Note that the 3D models recovered
from the gradient IP data are very similar to the ones recovered from the pole–dipole IP data.
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Figure 8. A 3D view of the 3D resistivity model recovered from 3D inversion of pole–dipole IP data.

Figure 9. A 3D view of the 3D chargeability model recovered from 3D inversion of pole–dipole IP data.
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Figure 10. A 3D view of the 3D time constant model recovered from 3D inversion of pole–dipole
IP data.

Figure 11. A 3D view of the 3D relaxation parameter model recovered from 3D inversion of pole–dipole
IP data.

Figures 12–15 show vertical cross sections of 3D models (resistivity, chargeability, time constant,
and relaxation parameter) recovered from 3D inversion of pole–dipole IP data along survey line 1.
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Figure 12. A vertical cross section of the 3D resistivity model recovered from 3D inversion of the
pole–dipole IP data along Line 1.

Figure 13. A vertical cross section of the 3D chargeability model recovered from 3D inversion of the
pole–dipole IP data along Line 1.
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Figure 14. A vertical cross section of the 3D time constant model recovered from 3D inversion of the
pole–dipole IP data along Line 1.

Figure 15. A vertical cross section of the 3D relaxation parameter model recovered from 3D inversion
of the pole–dipole IP data along Line 1.
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8.2. Interpretation of the Target Mineralization Zones

We have interpreted the target mineralization zones by using geoelectrical models recovered
from 3D inversion of the IP data, petrophysical and mineralogical analyses of the rock samples [16],
and assay data analysis of the drill cores. Based on the analyses of six rock samples with a relatively
high grade of Cu (>0.1 %), we determined the ranges of electrical properties of the rocks (resistivity,
chargeability, time constant, and relaxation parameter), which were used as the “filters” for the same
parameters defined by 3D inversion.

Figure 16 shows the 3D cross plots between chargeability, time constant, and relaxation parameter,
obtained from GEMTIP analysis of the rock samples. In this figure, the volume shown in red is
assumed to represent the ranges of the electrical properties for the mineralized rock.

Figure 16. A 3D cross plot between the chargeability, time constant, and relaxation parameter. The target
mineralized zones can be specified using the range of red volume.

Figures 17 and 18 show a 3D view and top view of the interpreted target mineralized zones.
In those figures, the color of the body corresponds to the chargeability value recovered from the 3D
inversion of the IP data (hot color—high chargeability; cold color—low chargeability). Figure 19
show vertical cross sections of the interpreted target mineralized zones along the five lines shown
in Figure 18. One can clearly see good correlations between the interpreted bodies and known
mineralization. This opens a possibility to estimate the target mineralized zones by using a rigorous
3D inversion of the IP data interpreted with petrophysical and mineralogical analyses of rock samples,
and assay data analysis.
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Figure 17. A 3D view of the interpreted target mineralized zones.

Figure 18. A top view of the interpreted target mineralized zones.
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Figure 19. Vertical cross sections of the 3D interpreted target mineralized zones along (a) section 1,
(b) section 2, (c) section 3, (d) section 4, and (e) section 5 in Figure 18, with assay data.
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9. Conclusions

We have developed a novel method of 3D inversion of the IP data based on the GEMTIP
conductivity relaxation model. The developed method takes into account the nonlinear nature of both
the electromagnetic induction and the IP phenomena and inverts the EM data into the parameters of
the GEMTIP model. The method was validated by synthetic data inversions of both frequency and
time domain IP data for the GEMTIP model parameters. We have applied the developed method to
the 3D inversion of the IP data acquired in Mongolia.

We have also established a workflow for comprehensive interpretation of IP survey data by
integrating our developed rigorous 3D inversion technique with the results of petrophysical and
mineralogical analysis of rock samples, and with the results of assay data analysis. It was demonstrated
that our interpretation workflow can estimate the target mineralized zones appropriately, and this
opens a possibility to estimate the target mineralized zones remotely.
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